moglobi.ru Другие Правовые Компьютерные Экономические Астрономические Географические Про туризм Биологические Исторические Медицинские Математические Физические Философские Химические Литературные Бухгалтерские Спортивные Психологичексиедобавить свой файл
страница 1 страница 2
С сайта «Микология»

http://www.rusmedserv.com/mycology/html/asper7.htm

Проблемы медицинской микологии.- 2005.- Т.7,№1.- С.3-13.  

Иммунитет при туберкулезе и аспергиллезе (обзор)


 Е.В.Свирщевская1, В.С. Митрофанов2, Р.И. Шендерова3, Н.М. Чужова3.

1Институт биоорганической химии РАН, Москва; 2НИИ медицинской микологии им. П.Н. Кашкина, Санкт-Петербургская медицинская академия последипломного образования; 3НИИ фтизиопульмонологии МЗ РФ, Санкт-Петербург, Россия

В обзоре представлены данные о механизмах патогенеза развития туберкулеза и инвазивных форм аспергиллеза.

Ключевые слова: туберкулез, Mycobacterium tuberculosis, инвазивный аспергиллез, Aspergillus fumigatus, внутриклеточные инфекции, врожденный иммунитет, Т-хелперы 1, TLR рецепторы

IMMUNITY IN TUBERCULOSIS AND ASPERGILLOSIS (REVIEW)


E.V. Svirshchevskaya1, V.S. Mitrofanov2, R.I. Shenderova3, N.M. Chyjova3

The mechanisms of pathogenesis of tuberculosis and invasive aspergillosis are discussed in this review.

Key words: tuberculosis, Mycobacterium tuberculosis, invasive aspergillosis, Aspergillus fumigatus, intracellular infectious, Th1, Toll-like receptors.

Введение


Туберкулез и аспергиллез являются двумя хроническими инфекциями легких, имеющих много общего в основе патогенеза [1]. Обе инфекции могут протекать как манифестно, так и развиваться незаметно. Симптомы заболевания варьируют от субклинических проявлений до острого сепсиса с легочной недостаточностью, когда пациенты нуждаются в реанимационных мероприятиях. Туберкулез вызывают патогенные бактерии Mycobacterium tuberculosis при определенных условиях, и прежде всего при снижении эффективности функционирования иммунной системы. Aspergillus является условным патогенном, который наиболее часто вызывает инвазивные формы аспергиллеза у больных с серьезными иммунодефицитными состояниями, например, реципиентов трансплантатов органов и тканей, больных СПИДом, онкологических и прочие пациентов, получающих иммуносупрессивную терапию [2,4,5,6]. В последние годы накоплены данные о том, что  некоторые формы аспергиллеза (хронический инвазивный аспергиллез и аспергиллема) все чаще выявляют у иммунокомпетентных больных, что связывают как с улучшением диагностики данных патологических состояний, так и с более глубоким пониманием механизмов их патогенеза [7,8]. Частота ассоциации туберкулеза и аспергиллеза достигает 50-76%, в результате чего дифференциальная диагностика этих заболеваний нередко затруднена. В целом, механизмы ответа иммунной системы на M. tuberculosis и A. fumigatus сходные, а разница в частоте данных заболеваний связана с особенностями микроорганизмов, а нет принципиальных различий в ответе на них иммунной системы. 

Основными входными воротами M. tuberculosis и A. fumigatus, является респираторный тракт; M. tuberculosis и споры A. fumigatus являются внутриклеточными патогенами, способны выживать и реплицироваться внутри фаголизосом фагоцитирующих клеток за счет блокады слияния фагосом с поздними лизосомами. При дефиците питания, сопутствующих заболеваниях, стрессах количество туберкулезных микобактерий внутри зараженных фагоцитов может резко возрастать. В этом случае увеличивается контакт антигена с иммунной системой хозяина и активируется противотуберкулезный ответ. Исход такого взаимодействия различен: от полного выздоровления до заболевания в острой или хронической форме. При хроническом процессе, также как и при аспергиллезе, в месте массированной гибели зараженных фагоцитов наблюдается формирование гранулем и казеозного некротического материала. Формирование гранулем является способом, выработанным иммунной системой для ограничения дальнейшей диссеминации патогена. В том случае, когда формирование гранулем недостаточно эффективно, может развиваться диссеминированный туберкулез, что значительно ухудшает прогноз заболевания и затрудняет лечение.

Споры аспергилла дымчатого также способны выживать и созревать в фагосомах, что может приводить к гибели фагоцитов. Созревшие споры прорастают, увеличивая антигенную нагрузку и вызывая иммунный ответ. В результате такого взаимодействия может развиваться заболевание или происходит элиминация антигена и выздоровление. Наличие предсуществующей полости может способствовать формированию аспергиллем, так как доступ клеток иммунной системы в эти полости затруднен.

Далеко не всегда развитие хронических форм туберкулеза и аспергиллеза связано со снижением функций иммунной системы [7,8, 9,10]. И в том, и в другом случаях существует популяция людей, генетически более предрасположенная к этим заболеваниям, что связано с особенностями функционирования системы внутриклеточного клиренса фагоцитов, с дефектами системы гуморальных факторов резистентности слизистых оболочек, с наличием лектина, отвечающего за распознавание углеводов у патогенов, а также ассоциировано с определенными белками, экспрессируемыми генами главного комплекса гистосовместимости (HLA I и II классов) [11,12,13]. Вероятно, определенную роль играют также половые гормоны, так как туберкулезом и аспергиллезом чаще болеют мужчины (69-75%) [14,15]. 

Сопоставление этих двух заболеваний интересно в том отношении, что туберкулез чрезвычайно распространен и, до появления эффективных противотуберкулезных антибиотиков, от туберкулеза погибало до 30% населения. На настоящий момент те же 30% инфицированы микобактериями туберкулеза [15,16], причем туберкулез зачастую развивается в молодом возрасте. Напротив, аспергиллез является относительно редким заболеванием и чаще возникает в возрасте после 40 лет. Но можно ожидать, что все особенности патогенеза аспергиллеза в большей или меньшей степени коррелируют с особенностями патогенеза туберкулеза. Так, например, известно, что для выживания патогенов внутри эндосом фагоцитов хозяина требуется депонирование патогеном ионов железа [17]. Прямой патогенный эффект увеличенной нагрузки железом на развитие туберкулеза показан на экспериментальных моделях и у людей [18,19]. По-видимому, аналогичный эффект железа можно будет выявить и при аспергиллезе, так как показано, что грибы имеют систему депонирования железа [20,21]. Действительно, при анализе изображения церебрального очага аспергиллеза, полученного с помощью ядерно-магнитного резонанса, была выявлена зона накопления железа, свидетельствующая, по-видимому, об активной пролиферации аспергиллов [22] .

Неспецифические факторы устойчивости организма человека, составляющие систему барьерных органов и тканей, клеток и биологических жидкостей одинаково реагируют на разные антигены: распознают их и выводят из организма, предварительно убивая микроорганизмы. Эффективность защитных неспецифических факторов зависит от их компетентности и свойств антигена. Макрофаги, нейтрофильные гранулоциты, моноциты и естественные киллеры (ЕК) могут непосредственно убивать патогены или подавлять их способность к размножению, осуществляя активный выброс внутриклеточных бактерицидных субстанций (лизосомно-катионные белков, супероксидных радикалов, гидролитических ферментов) и/или за счет фагоцитоза с последующим внутриклеточным перевариванием. Система комплемента, лизоцим, β-лизины и ряд других компонентов с той или иной долей успеха служат внеклеточному перевариванию возбудителя.      



При встрече с патогенным микроорганизмом все клеточные и гуморальные факторы вступают с ним в борьбу. В большинстве случаев при низкой антигенной нагрузке (единичные микобактерии или споры гриба) элиминация патогена происходит «силами» врожденного иммунитета. Однако в ряде случаев, механизмов врожденного иммунитета оказывается недостаточно. Тогда определенную помощь может оказывать система приобретенного иммунитета, которая формирует специфический, адресный иммунный ответ - формируется иммунитет к возбудителю туберкулеза или аспергиллеза.

 Механизмы врожденного иммунитета при туберкулезе и аспергиллезе


Неспецифический или врожденный иммунитет играет основную роль в защите от непатогенных или условно патогенных микроорганизмов, а также в элиминации любого генетически чужеродного материала из организма. В норме бактерии и споры обычно удаляются из органов дыхания посредством мукоцилиарного клиренса. Движение слизи по эпителиальным цилиарным клеткам в мелких воздушных путях составляет 0,5-1,0 мм/мин, а в больших -  5-20 мм/мин. Известно, что первой линией защиты  дыхательной системы от проникновения инородных частиц является аэродинамический барьер. Частички взвеси в воздушном потоке имеют склонность оседать на поверхность, если они по размерам свыше 20 мкм. Большая часть частиц размером 5-10 мкм ударяется и прилипает к задней стенке глотки, где находится лимфоидное кольцо. A. fumigatus имеют споры диаметром 2,5-3 мкм, что обеспечивает им возможность глубоко проникать в дыхательные пути и достигать альвеол.

Роль системы поверхностно-активных белков


Поверхностный слой слизистого эпителия содержит множество гуморальных факторов, способствующих бактерицидности слизистого секрета. Одним из факторов генетической предрасположенности к туберкулезу и аспергиллезу является дефект системы поверхностно-активных молекул (сурфактантов), к которой относят маннозо-связывающий белок (МСБ), белки-сурфактанты A и Д, коллектины и пентраксины. Возможно существуют и другие, еще не идентифицированные, молекулы. MСБ является основным опсонизирующим белком врожденной системы иммунитета [23]. Пониженная экспрессия этого белка выявлена у 70% больных с хроническим инвазивным аспергиллезом. Аналогичный показатель был снижен только у 26% в контрольной группе [24]. Данные по туберкулезу отличаются. Так, среди больных низкий уровень экспрессии МСБ наблюдали крайне редко [25]. Однако была выявлена связь между определенными аллелями генов МСБ, ассоциированными с чувствительностью к туберкулезу [26,27]. Полиморфизм белков системы сурфактантов также может быть ассоциирован с туберкулезом и аспергиллезом. Продукция сурфактантов необходима для поддержания стабильности альвеол и нормального функционирования легких. Мутации в трех разных генах, связанных с продукцией и функционированием сурфактантов, приводят к дефициту этих белков и ассоциированы с рядом острых и хронических болезней легких [28]. Также было показано, что сурфактанты А и Д обладают прямым антимикробным действием и способны ингибировать рост бактерий и грибов за счет увеличения их проницаемости и доступности для связи с коллектинами, которые впоследствии облегчают фагоцитоз бактерий и спор грибов [29]. Дефекты системы сурфактантов выявлены у больных идиопатическим фиброзом, заболеванием, ассоциированным с высоким риском развития аспергиллеза [30]. Еще одним классом молекул, принимающих участие в клиренсе патогенов с поверхности слизистой оболочки легких, являются пентраксины. Пентраксины – это суперсемейство консервативных белков, имеющих циклическую мультимерную структуру. Было показано, что мыши с инактивированным геном, кодирующим длинный пентраксин Ptx3, являются чувствительными к инвазивному аспергиллезу [31]. Ассоциация между экспрессией пентраксинов и туберкулезом также была доказана [32]. В целом, дефекты клиренса поверхности слизистых оболочек могут приводить к более длительному удержанию бактерий и спор гриба, что облегчает их инвазию в ткани за счет продукции ими протеаз и токсинов.

Роль клеток врожденной системы иммунитета в защите от внутриклеточных патогенов


Имеющиеся нарушения в системе клиренса могут быть компенсированы за счет эффективного функционирования клеток врожденной системы иммунитета. В первую очередь к таким клеткам относят макрофаги (Mф) и нейтрофилы. M. tuberculosis и споры A. fumigatus персистируют внутри эндосом макрофагов после их фагоцитирования Биогенез фагоцитоза и фаголизосом является фундаментальным биологическим процессом, необходимым для эффективного гомеостаза и развития тканей, удаления патогенного материала, обработки и представления клеткам адаптивного иммунитета антигенов, происходящих их этих патогенов. Формирование фагосомы запускает запрограммированный процесс созревания фаголизосомы, который контролируют Ca2+ и регуляторы движения органелл вокруг малых GTP(guanosine triphosphatases)-связывающих белков Rabs и эффекторных молекул активируемого каскада, таких как липидные киназы, молекулы, связанные с органеллами, и аппарат слияния мембран [33]. Микобактерии туберкулеза нарушают Rab-контролируемое движение мембран и препятствуют созреванию фагосомы на стадии, когда патоген для лизосомальных ферментов недоступен, но имеет возможность получать факторы питания. Этот процесс, называемый «арестом созревания фагосом», является критичным для выживания M. tuberculosis. Механизм персистенции спор A. fumigatus не известен.

Установлено, что способность Мф убивать внутриклеточные патогены, такие как M. tuberculosis, A. fumigatus, Leishmania donovani, Salmonella enterica var. Typhimurium и другие, зависит от генетической устойчивости и ассоциирована с геном bcg [34]. Основным белковым продуктом, кодируемым этим локусом, является макрофагальный белок, связанный с естественной устойчивостью макрофагов (Natural resistance-associated macrophage protein 1, Nramp1) к внутриклеточным патогенам [35,36]. Nramp1 является насосом, выкачивающим двухвалентные катионы, такие как Fe2+ и Ni2+, из эндосом в цитозоль за счет обмена на протоны. Nramp 1 экспрессирован исключительно в клетках макрофагально-моноцитарной линии. Его основная роль связана с устойчивостью фагоцитов именно к внутрифагосомальным патогенам [37]. У человека дефект Nramp1 ассоциирован с такими заболеваниями как лепра, легочный туберкулез, висцеральный лейшманиоз, менингококковый менингит, ВИЧ, а также отмечен при ряде аутоиммунных патологий таких, как ревматоидный артрит и болезнь Крона. Полиморфизм в гене Nramp1 ассоциирован с чувствительностью к туберкулезу в определенной популяции людей в Китае [38]. Данных по сочетанию Nramp1 с инвазивными формами аспергиллеза к настощему времени нет. Однако Nramp1 все же играет определенную роль в предрасположенности к аллергическим формам аспергиллеза [39].

Мф и полиморфноядерные нейтрофилы (ПМН) могут распознавать, связывать и интернализовать клетки M. tuberculosis и конидии A. fumigatus. Долгое время не было понятно, как именно макрофаги и другие фагоцитирующие клетки способны распознавать генетически чужеродный материал и активироваться при первой встрече с патогеном. В 1997 г. был описан гомолог Toll-рецептора дрозофилы, найденный у млекопитающих, и названный Toll-подобным рецептором (Toll-like receptor, TLR) [40]. Подобно Toll рецепторам дрозофилы система TLR у млекопитающих относят к врожденной системе иммунитета. Именно TLR распознают различные типы патогенов и обеспечивают первую линию защиты организма. К настоящему моменту известно семейство TLR, состоящее из 10 членов. Лигандами TLR в большинстве случаев являются такие небелковые молекулы, как бактериальные липополисахариды, липотехоевая кислота, бактериальная ДНК, пептидогликаны, липопротеины, галактоманнан из грибов, двунитевая вирусная РНК, а также бактериальный белок флагеллин и др. [41].

Основным лигандом TLR на поверхности M. tuberculosis является арабиноманан, который распознается TLR2. Кроме того, в распознавании принимает участие также TLR4 [42,43]. Данных о лигандах, связывающихся с TLR из грибов, значительно меньше. Так, считают, что такой структурой A. fumigatus является галактоманан - основной компонент клеточной стенки, который распознается TLR4 [44]. Распознавание арабиноманана и галактоманана осуществляется, вероятно, через взаимодействие с поверхностно-активными белками сурфактантами легких SP-A и SP-D, которые играют определенную роль в противомикробной защите за счет агглютинации бактерий, конидий  и усиления фагоцитоза [45]. Распознавание консервативных структур патогенов клетками врожденного иммунитета зачастую осуществляется не непосредственно TLR, а через образование комплексов с белками-посредниками (Рис.1). Так, показано участие во взаимодействии с A. fumigatus не только белков-сурфактантов, но и белков из семейства пентраксинов [46]. Комплексы, образованные белком-посредником с патогеном, далее способны активировать фагоцитоз через систему TLR. Распознавание M. tuberculosis через TLR 2 и 4 осуществляется как Мф, так и дендритными клетками. Мф могут также фагоцитировать патогены, используя особый рецептор класса А, выполняющий роль «сборщика мусора» (scavenger receptor class A - SRA) [47].    


Роль макрофагов


Макрофаги фагоцитируют M. tuberculosis или споры гриба в результате распознавания сахаров патогенов через систему TLR, однако киллинг наблюдают лишь через 20-24 ч, спустя 6-12 ч после завершения фагоцитоза [48,49]. Выявлена различная чувствительность спор к киллингу макрофагами в зависимости от стадии развития. Так, покоящиеся споры менее чувствительны к киллингу и могут выживать и прорастать в моноцитах [50,51].

Основной механизм киллинга патогенов Мф не зависит от реактивных форм кислорода и азота. Так, показано, что макрофаги способны убивать споры в анаэробных условиях. Макрофаги, выделенные из периферической крови человека и культивируемые несколько дней in vitro убивали споры гриба, но у них не был отмечен «перекисный взрыв»; X-CGD мыши (X-linked granulomatous disease), генетически не способные  к продукции перекисных форм кислорода, также эффективно убивали споры гриба, как и контрольные мыши [52]. Механизмы, обеспечивающие киллинг бактерий и спор гриба, изучены недостаточно. Определенную роль в этих процессах играют эндосомальные протеазы [53]. 


Роль нейтрофилов


TLR рецепторы также обнаружены и на тучных клетках и эпителиоцитах [54,55]. Состав  TLR на этих клетках представлен не полностью, и их экспрессия ниже, чем на макрофагах и дендритных клетках. Тем не менее, их активация через систему TLR приводит к выбросу ряда цитокинов и хемокинов, что в свою очередь приводит к хомингу нейтрофилов в место попадания инфекции [56,57]. Так же как и макрофаги, нейтрофилы взаимодействуют с патогенами, распознавая галактоманан и арабиноманан клеточной стенки. Основным механизмом киллинга является продукция перекисных радикалов кислорода, а также дегрануляция нейтрофилов [58,59]. Этот процесс протекает быстро, так как 50% патогенов погибают за первые 2 ч инкубации клеток [58,60]. Основной молекулой, повреждающей стенку патогенов, является, вероятно, сериновая протеаза, входящая в состав гранул фагоцитов [61].

Прочие клетки, такие как тромбоциты, тучные, эпителиальные, базофилы и эозинофилы, также могут принимать участие в защите против M. tuberculosis и A. fumigatus за счет связывания через TLR рецепторы, усиливая нейтрофил-опосредованную реакцию, а также оказывая повреждающее действие на патогены за счет продукции дефенсинов [62,63].   

Суммируя вышесказанное, можно сделать вывод, что способность эффективно удалять патогены с поверхности слизистых, а также устойчивость фагоцитов к внутрифагосомальным возбудителям инфекций являются основными протективными факторами при защите от туберкулеза и аспергиллеза. Нарушения в этих звеньях врожденного иммунитета могут постепенно приводить к заболеванию, особенно на фоне прочих предрасполагающих факторов таких, как лечение кортикостероидами, наличие хронических заболеваний,  рак, ВИЧ или трансплантация органов.            


страница 1 страница 2
скачать файл


Смотрите также: